

# Characterization of the Visible Light Photon Counter for optical communications on a photon-starved channel

W. H. Farr, J. Kovalik, D. Jackson, L. Taylor, D. Q. Zhu

Jet Propulsion Laboratory

California Institute of Technology



- Photon Counting: good for deep space optical communications
- The Visible Light Photon Counter (VLPC): what and why
- Test Configuration Overview: JPL's detector characterization facility
- VLPC Signal Processing: analog signal chain and digital analysis
- VLPC Characterization: pulse response, gain, noise, linearity
- Receiver Signal Processing: front end architecture
- Ongoing work and Summary



# Photon Counting for Deep Space Optical Comm







$$C = B \left[ \log_2 \left( 1 + \frac{1}{M} \right) + \frac{1}{M} \log_2 \left( 1 + M \right) \right] \xrightarrow{PPM \, encoding} C = \frac{B}{M} \log_2 M$$
from Brillouin's "negentropy principle"

- Photon counting can yield a higher channel capacity than phase-sensitive detectors
- Deep Space Optical Communications requires data encodings that maximize the (bits/sec) per (Joule/sec) metric
- PPM Encoding with Photon Counting detection is an attractive solution

| Detector Class              | Examples                                                                             | Photon Capacity<br>Limit |
|-----------------------------|--------------------------------------------------------------------------------------|--------------------------|
| phase insensitive amplifier | parametric amplifier,<br>Raman amplifier,<br>Iaser amplifier                         | 1.44                     |
| dual quadrature sensitive   | coherent heterodyne                                                                  | 1.44                     |
| single quadrature sensitive | coherent homodyne,<br>degenerate parametric amplif                                   | 2.88<br>ier              |
| photon counting             | photomultiplier tube,<br>cooled avalanche photodiode<br>hot electron superconducting | (photon at 1 um 9.1EOV)  |



Higher efficiency means a choice of:

- Lower transmitter power
- Smaller receive aperture
- Higher data rate



8-detector VLPC chip
1-mm diameter detector area



- The VLPC is a variant of a Si:As detector with avalanche gain that was developed by DRS Technologies for use in Fermilab's D0 detector
  - The combination of intrinsic Si and extrinsic As absorption gives a spectral response from 0.4 to 28 microns
  - Operating temperature range is typically 6 to 10K
- A non-Markovian gain process allows the device to exhibit a gain variance near one
  - With a typical gain of 20000 to 40000 this means photon counting with photon number resolution!

M. Petroff and M. Stapelbroek *IEEE Trans. Nuclear Sci.*, **36**, 158, (1989)





Si:As Detector Detection Efficiency

WHF - 4



- If you want to photon count in the visible, and can cool to < 10K, the VLPC is a great detector!
- Unfortunately, for 1 to 1.5 micron optical communications, where there
  are good laser sources, the detection efficiency is poor, as this falls
  between the intrinsic Si and extrinsic As absorption bands
- However, the VLPC is an excellent device to demonstrate high rate photon counting optical communications while other photon number devices with enhanced near-IR response are being developed
  - Such as:
    - arrays of Geiger mode InGaAs/InGaAsP avalanche photodiodes
    - hybrid photomultiplier tubes with InGaAs/InGaAsP photocathodes
    - Si:As detectors with a separate absorber layer
    - InGaAs/InGaAsP MIS avalanche detectors





- The test configuration emulates deep space receive signal levels (pW) with CW background and a GHz rate intensity modulated optical data stream
- The detector output is typically digitized and post-processed in near-real time







 New lab at JPL dedicated to characterizing optical detectors for deep space optical communications



## VLPC Analog Signal Chain

## **Optical Cryostat Layout with Cryogenic LNA**



- The initial preamplifier is also cooled to < 15K to minimize additive thermal noise for detector calibration
- A microstrip architecture allows the detector and amplifier to be physically separated

## **Microstrip Biasing Topology**





InGaP LNA in 12 GHz Chassis

Commercial chip (Sirenza) with ultra-low noise and multi-GHz bandwidth that can operate at cryogenic temperatures



- In addition to time domain displays and Fourier analysis, pulse height and pulse area histograms are essential to characterize the detector performance
  - detector gain and excess noise are derived from pulse area histograms
  - dark rate and photon counting linearity are derived from thresholded peak height histograms
  - other histograms: pulse width distribution and interarrival time



WHF - 9





Single photon output pulse is typically about 1 ns wide with 30000 electrons







## As expected, detection efficiency at 1064 nm is very poor

- However, electrical output pulse was verified to be independent of wavelength, so this wavelength can be used to verify optical communications performance
- Observed loss in detection efficiency at high incident flux rates (many 10's of MHz detected photons) is due to loss of gain from space charge effects
- We prefer to use 1064 nm as most of our calibrated sources and detectors are at that wavelength













## • 0.5 dB compression point at 17 MHz at 9.5K, for instance

5 dB compression at 50 MHz at 9.5K





**VLPC Arrival Rate Histogram** 

Exponential interarrival time distribution is expected for CW illumination



- A flexible photon counting receiver front-end can be constructed by analog sampling of the detector output
  - The pulse discriminator function is emulated by digital signal processing (DSP)
  - This is more flexible than a pure hardware solution, comprising a comparator and counter, for instance
    - DSP can implement FIR signal filtering, for instance
  - Note: a Geiger mode avalanche photodiode may be considered as having a hardwired "comparator" stage that implements a discriminator with only zero or greater than zero resolution







note: horizontal scale on slot energy histograms varies between plots

- Slot histograms represent the sum of signal and noise generated charge in a PPM slot
- Thresholding converts the slot integrated charge levels ("energy") into a photon number
- Subsequent processing of the photon number signal is essentially "noise free"



comparison of thresholded vs. non-thresholded signal processing for an example MLCD link



- Work is in progress to acquire symbol (no FEC coding) and bit (FEC decoded) error rate data using the VLPC as the detector for a software digital receiver for comparison with theoretical predictions
- Testing with the VLPC has established techniques that are now being used to characterized newer high bandwidth photon number resolving detectors with enhanced near-IR sensitivity
  - VLPC with PtSi layer added to improve near-IR absorption
  - Intevac HPMT with InGaAs or InGaAsP photocathode
    - This has now demonstrated 34% single photon detection efficiency at JPL, for instance



- A photon counting / photon number resolving detector can be used with a PPM encoded laser source to implement a high efficiency, high data rate optical communications link
- The VLPC is an excellent photon number resolving detector for the 0.4 to 28 micron spectral range (although poor in the 1 to 2 micron range)
  - High bandwidth with large area
  - High gain with very low excess noise
  - Can handle high flux rates: many 10's of MHz per mm<sup>2</sup>
  - Although < 10K operation is problematic for many applications</li>
- Other detector technologies are rapidly maturing that will be able to provide similar performance in the 1 to 1.5 micron regime